Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 501 - 525 of 663 results
501.

Spatiotemporal Control of TGF-β Signaling with Light.

blue CRY2/CIB1 HeLa Signaling cascade control
ACS Synth Biol, 14 Dec 2017 DOI: 10.1021/acssynbio.7b00225 Link to full text
Abstract: Cells employ signaling pathways to make decisions in response to changes in their immediate environment. Transforming growth factor beta (TGF-β) is an important growth factor that regulates many cellular functions in development and disease. Although the molecular mechanisms of TGF-β signaling have been well studied, our understanding of this pathway is limited by the lack of tools that allow the control of TGF-β signaling with high spatiotemporal resolution. Here, we developed an optogenetic system (optoTGFBRs) that enables the precise control of TGF-β signaling in time and space. Using the optoTGFBRs system, we show that TGF-β signaling can be selectively and sequentially activated in single cells through the modulation of the pattern of light stimulations. By simultaneously monitoring the subcellular localization of TGF-β receptor and Smad2 proteins, we characterized the dynamics of TGF-β signaling in response to different patterns of blue light stimulations. The spatial and temporal precision of light control will make the optoTGFBRs system as a powerful tool for quantitative analyses of TGF-β signaling at the single cell level.
502.

Optogenetic tools for cell biological applications.

blue near-infrared red Cryptochromes LOV domains Phytochromes Review
J Thorac Dis, 9 Dec 2017 DOI: 10.21037/jtd.2017.11.73 Link to full text
Abstract: Abstract not available.
503.

Coupling optogenetics and light-sheet microscopy, a method to study Wnt signaling during embryogenesis.

blue CRY2/CRY2 D. melanogaster in vivo HEK293 Developmental processes
Sci Rep, 30 Nov 2017 DOI: 10.1038/s41598-017-16879-0 Link to full text
Abstract: Optogenetics allows precise, fast and reversible intervention in biological processes. Light-sheet microscopy allows observation of the full course of Drosophila embryonic development from egg to larva. Bringing the two approaches together allows unparalleled precision into the temporal regulation of signaling pathways and cellular processes in vivo. To develop this method, we investigated the regulation of canonical Wnt signaling during anterior-posterior patterning of the Drosophila embryonic epidermis. Cryptochrome 2 (CRY2) from Arabidopsis Thaliana was fused to mCherry fluorescent protein and Drosophila β-catenin to form an easy to visualize optogenetic switch. Blue light illumination caused oligomerization of the fusion protein and inhibited downstream Wnt signaling in vitro and in vivo. Temporal inactivation of β-catenin confirmed that Wnt signaling is required not only for Drosophila pattern formation, but also for maintenance later in development. We anticipate that this method will be easily extendable to other developmental signaling pathways and many other experimental systems.
504.

Illuminating information transfer in signaling dynamics by optogenetics.

blue red Cryptochromes LOV domains Phytochromes Review
Curr Opin Cell Biol, 22 Nov 2017 DOI: 10.1016/j.ceb.2017.11.002 Link to full text
Abstract: Cells receive diverse signaling cues from their environment that trigger cascades of biochemical reactions in a dynamic manner. Single-cell imaging technologies have revealed that not only molecular species but also dynamic patterns of signaling inputs determine the fates of signal-receiving cells; however it has been challenging to elucidate how such dynamic information is delivered and decoded in complex networks of inter-cellular and inter-molecular interactions. The recent development of optogenetic technology with photo-sensitive proteins has changed this situation; the combination of microscopy and optogenetics provides fruitful insights into the mechanism of dynamic information processing at the single-cell level. Here, we review recent efforts to visualize the flows of dynamic patterns in signaling pathways, which utilize methods integrating single-cell imaging and optogenetics.
505.

New Developments in CRISPR/Cas-based Functional Genomics and their Implications for Research using Zebrafish.

blue Cryptochromes LOV domains Review
Curr Gene Ther, 21 Nov 2017 DOI: 10.2174/1566523217666171121164132 Link to full text
Abstract: Genome editing using CRISPR/Cas9 has advanced very rapidly in its scope, versatility and ease of use. Zebrafish (Danio rerio) has been one of the vertebrate model species where CRISPR/Cas9 has been applied very extensively for many different purposes and with great success. In particular, disease modeling in zebrafish is useful for testing specific gene variants for pathogenicity in a preclinical setting. Here we describe multiple advances in diverse species and systems that can improve genome editing in zebrafish. To achieve temporal and spatial precision of genome editing, many new technologies can be applied in zebrafish such as artificial transcription factors, drug-inducible or optogenetically-driven expression of Cas9, or chemically-inducible activation of Cas9. Moreover, chemically- or optogenetically-inducible reconstitution of dead Cas9 (catalytically inactive, dCas9) can enable spatiotemporal control of gene regulation. In addition to controlling where and when genome editing occurs, using oligonucleotides allows for the introduction (knock-in) of precise modifications of the genome. We review recent trends to improve the precision and efficiency of oligo-based point mutation knock-ins and discuss how these improvements can apply to work in zebrafish. Similarly to how chemical mutagenesis enabled the first genetic screens in zebrafish, multiplexed sgRNA libraries and Cas9 can enable the next revolutionary transition in how genetic screens are performed in this species. We discuss the first examples and prospects of approaches using sgRNAs as specific and effective mutagens. Moreover, we have reviewed methods aimed at measuring the phenotypes of single cells after their mutagenic perturbation with vectors encoding individual sgRNAs. These methods can range from different cell-based reporters to single-cell RNA sequencing and can serve as great tools for high-throughput genetic screens.
506.

Emerging approaches for spatiotemporal control of targeted genome with inducible CRISPR-Cas9.

blue cyan near-infrared red Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Anal Chem, 21 Nov 2017 DOI: 10.1021/acs.analchem.7b04757 Link to full text
Abstract: The breakthrough CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated protein 9) nuclease has revolutionized our ability in genome engineering. Although Cas9 is already a powerful tool for simple and efficient target endogenous gene manipulation, further engineering of Cas9 will improve the performance of Cas9, such as gene-editing efficiency and accuracy in vivo, and expand the application possibility of this Cas9 technology. The emerging inducible Cas9 methods, which can control the activity of Cas9 using an external stimulus such as chemicals and light, have the potential to provide spatiotemporal gene manipulation in user-defined cell population at a specific time and improve the accuracy of Cas9-mediated genome editing. In this review, we focus on the recent advance in inducible Cas9 technologies, especially light-inducible Cas9, and related methodologies, and also discuss future directions of this emerging tools.
507.

Optogenetic activation of EphB2 receptor in dendrites induced actin polymerization by activating Arg kinase.

blue CRY2olig 3T3MEF Cos-7 HEK293 rat hippocampal neurons Signaling cascade control Control of cytoskeleton / cell motility / cell shape
Biol Open, 20 Nov 2017 DOI: 10.1242/bio.029900 Link to full text
Abstract: Erythropoietin-producing hepatocellular (Eph) receptors regulate a wide array of developmental processes by responding to cell-cell contacts. EphB2 is well-expressed in brain and known to be important for dendritic spine development, as well as for the maintenance of the synapses, although the mechanisms of these functions have not been fully understood. Here we studied EphB2's functions in hippocampal neurons with an optogenetic approach, which allows us to specify spatial regions of signal activation and monitor in real-time the consequences of signal activation. We designed and constructed OptoEphB2, a genetically encoded photoactivatable EphB2. Photoactivation of OptoEphB2 in fibroblast cells induced receptor phosphorylation and resulted in cell rounding - a well-known cellular response to EphB2 activation. In contrast, local activation of OptoEphb2 in dendrites of hippocampal neurons induces rapid actin polymerization, resulting dynamic dendritic filopodial growth. Inhibition of Rac1 and CDC42 did not abolish OptoEphB2-induced actin polymerization. Instead, we identified Abelson Tyrosine-Protein Kinase 2 (Abl2/Arg) as a necessary effector in OptoEphB2-induced filopodia growth in dendrites. These findings provided new mechanistic insight into EphB2's role in neural development and demonstrated the advantage of OptoEphB as a new tool for studying EphB signaling.
508.

Cell membrane dynamics induction using optogenetic tools.

blue near-infrared red Cryptochromes LOV domains Phytochromes Review
Biochem Biophys Res Commun, 16 Nov 2017 DOI: 10.1016/j.bbrc.2017.11.091 Link to full text
Abstract: Structures arising from actin-based cell membrane movements, including ruffles, lamellipodia, and filopodia, play important roles in a broad spectrum of cellular functions, such as cell motility, axon guidance in neurons, wound healing, and micropinocytosis. Previous studies investigating these cell membrane dynamics often relied on pharmacological inhibition, RNA interference, and constitutive active/dominant negative protein expression systems. However, such studies did not allow the modulation of protein activity at specific regions of cells, tissues, and organs in animals with high spatial and temporal precision. Recently, optogenetic tools for inducing cell membrane dynamics have been developed which address several of the disadvantages of previous techniques. In a recent study, we developed a powerful optogenetic tool, called the Magnet system, to change cell membrane dynamics through Tiam1 and PIP3 signal transductions with high spatial and temporal resolution. In this review, we summarize recent advances in optogenetic tools that allow us to induce actin-regulated cell membrane dynamics and unique membrane ruffles that we discovered using our Magnet system.
509.

Gradients of Rac1 Nanoclusters Support Spatial Patterns of Rac1 Signaling.

blue CRY2/CIB1 Cos-7
Cell Rep, 14 Nov 2017 DOI: 10.1016/j.celrep.2017.10.069 Link to full text
Abstract: Rac1 is a small RhoGTPase switch that orchestrates actin branching in space and time and protrusion/retraction cycles of the lamellipodia at the cell front during mesenchymal migration. Biosensor imaging has revealed a graded concentration of active GTP-loaded Rac1 in protruding regions of the cell. Here, using single-molecule imaging and super-resolution microscopy, we show an additional supramolecular organization of Rac1. We find that Rac1 partitions and is immobilized into nanoclusters of 50-100 molecules each. These nanoclusters assemble because of the interaction of the polybasic tail of Rac1 with the phosphoinositide lipids PIP2 and PIP3. The additional interactions with GEFs and possibly GAPs, downstream effectors, and other partners are responsible for an enrichment of Rac1 nanoclusters in protruding regions of the cell. Our results show that subcellular patterns of Rac1 activity are supported by gradients of signaling nanodomains of heterogeneous molecular composition, which presumably act as discrete signaling platforms.
510.

Real-time observation of light-controlled transcription in living cells.

blue CRY2/CIB1 U-2 OS
J Cell Sci, 9 Nov 2017 DOI: 10.1242/jcs.205534 Link to full text
Abstract: Gene expression is tightly regulated in space and time. To dissect this process with high temporal resolution, we introduce an optogenetic tool termed blue light-induced chromatin recruitment (BLInCR) that combines rapid and reversible light-dependent recruitment of effector proteins with a real-time readout for transcription. We used BLInCR to control the activity of a cluster of reporter genes in the human osteosarcoma cell line U2OS by reversibly recruiting the viral transactivator VP16. RNA production was detectable ∼2 min after VP16 recruitment and readily decreased when VP16 dissociated from the cluster in the absence of light. Quantitative assessment of the activation process revealed biphasic activation kinetics with a pronounced early phase in cells treated with the histone deacetylase inhibitor SAHA. Comparison with kinetic models of transcription activation suggests that the gene cluster undergoes a maturation process when activated. We anticipate that BLInCR will facilitate the study of transcription dynamics in living cells.This article has an associated First Person interview with the first author of the paper.
511.

Optogenetic regulation of artificial microRNA improves H2 production in green alga Chlamydomonas reinhardtii.

blue CRY2/CIB1 C. reinhardtii Transgene expression
Biotechnol Biofuels, 7 Nov 2017 DOI: 10.1186/s13068-017-0941-7 Link to full text
Abstract: Chlamydomonas reinhardtii is an ideal model organism not only for the study of basic metabolic processes in both plants and animals but also the production of biofuels including hydrogen. Transgenic analysis of C. reinhardtii is now well established and very convenient, but inducible exogenous gene expression systems remain under-studied. The most commonly used heat shock-inducible system has serious effects on algal cell growth and is difficult and costly to control in large-scale culture. Previous studies of hydrogen photoproduction in Chlamydomonas also use this heat-inducible system to activate target gene transcription and hydrogen synthesis.
512.

Propagating Wave of ERK Activation Orients Collective Cell Migration.

blue CRY2/CIB1 MDCK Control of cytoskeleton / cell motility / cell shape
Dev Cell, 6 Nov 2017 DOI: 10.1016/j.devcel.2017.10.016 Link to full text
Abstract: The biophysical framework of collective cell migration has been extensively investigated in recent years; however, it remains elusive how chemical inputs from neighboring cells are integrated to coordinate the collective movement. Here, we provide evidence that propagation waves of extracellular signal-related kinase (ERK) mitogen-activated protein kinase activation determine the direction of the collective cell migration. A wound-healing assay of Mardin-Darby canine kidney (MDCK) epithelial cells revealed two distinct types of ERK activation wave, a "tidal wave" from the wound, and a self-organized "spontaneous wave" in regions distant from the wound. In both cases, MDCK cells collectively migrated against the direction of the ERK activation wave. The inhibition of ERK activation propagation suppressed collective cell migration. An ERK activation wave spatiotemporally controlled actomyosin contraction and cell density. Furthermore, an optogenetic ERK activation wave reproduced the collective cell migration. These data provide new mechanistic insight into how cells sense the direction of collective cell migration.
513.

Optogenetic Tools for Subcellular Applications in Neuroscience.

blue cyan red UV BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Neuron, 1 Nov 2017 DOI: 10.1016/j.neuron.2017.09.047 Link to full text
Abstract: The ability to study cellular physiology using photosensitive, genetically encoded molecules has profoundly transformed neuroscience. The modern optogenetic toolbox includes fluorescent sensors to visualize signaling events in living cells and optogenetic actuators enabling manipulation of numerous cellular activities. Most optogenetic tools are not targeted to specific subcellular compartments but are localized with limited discrimination throughout the cell. Therefore, optogenetic activation often does not reflect context-dependent effects of highly localized intracellular signaling events. Subcellular targeting is required to achieve more specific optogenetic readouts and photomanipulation. Here we first provide a detailed overview of the available optogenetic tools with a focus on optogenetic actuators. Second, we review established strategies for targeting these tools to specific subcellular compartments. Finally, we discuss useful tools and targeting strategies that are currently missing from the optogenetics repertoire and provide suggestions for novel subcellular optogenetic applications.
514.

Near-Infrared Light Triggered Upconversion Optogenetic Nanosystem for Cancer Therapy.

blue CRY2/CIB1 HeLa mouse in vivo Cell death
ACS Nano, 30 Oct 2017 DOI: 10.1021/acsnano.7b06395 Link to full text
Abstract: In vivo the application of optogenetic manipulation in deep tissue is seriously obstructed by the limited penetration depth of visible light that is continually applied to activate a photoactuator. Herein, we designed a versatile upconversion optogenetic nanosystem based on a blue-light-mediated heterodimerization module and rare-earth upconversion nanoparticles (UCNs). The UCNs worked as a nanotransducer to convert external deep-tissue-penetrating near-infrared (NIR) light to local blue light to noninvasively activate photoreceptors for optogenetic manipulation in vivo. In this, we demonstrated that deeply penetrating NIR light could be used to control the apoptotic signaling pathway of cancer cells in both mammalian cells and mice by UCNs. We believe that this interesting NIR-light-responsive upconversion optogenetic nanotechnology has significant application potentials for both basic research and clinical applications in vivo.
515.

Design and Profiling of a Subcellular Targeted Optogenetic cAMP-Dependent Protein Kinase.

blue CRY2/CIB1 HEK293T MVD7 Signaling cascade control
Cell Chem Biol, 25 Oct 2017 DOI: 10.1016/j.chembiol.2017.09.011 Link to full text
Abstract: Although the cAMP-dependent protein kinase (PKA) is ubiquitously expressed, it is sequestered at specific subcellular locations throughout the cell, thereby resulting in compartmentalized cellular signaling that triggers site-specific behavioral phenotypes. We developed a three-step engineering strategy to construct an optogenetic PKA (optoPKA) and demonstrated that, upon illumination, optoPKA migrates to specified intracellular sites. Furthermore, we designed intracellular spatially segregated reporters of PKA activity and confirmed that optoPKA phosphorylates these reporters in a light-dependent fashion. Finally, proteomics experiments reveal that light activation of optoPKA results in the phosphorylation of known endogenous PKA substrates as well as potential novel substrates.
516.

Optogenetic control of focal adhesion kinase signaling.

blue CRY2/CRY2 HEK293 HEK293T HeLa Signaling cascade control
Cell Signal, 23 Oct 2017 DOI: 10.1016/j.cellsig.2017.10.012 Link to full text
Abstract: Focal adhesion kinase (FAK) integrates signaling from integrins, growth factor receptors and mechanical stress to control cell adhesion, motility, survival and proliferation. Here, we developed a single-component, photo-activatable FAK, termed optoFAK, by using blue light-induced oligomerization of cryptochrome 2 (CRY2) to activate FAK-CRY2 fusion proteins. OptoFAK functions uncoupled from physiological stimuli and activates downstream signaling rapidly and reversibly upon blue light exposure. OptoFAK stimulates SRC creating a positive feedback loop on FAK activation, facilitating phosphorylation of paxillin and p130Cas in adherent cells. In detached cells or in mechanically stressed adherent cells, optoFAK is autophosphorylated upon exposure to blue light, however, downstream signaling is hampered indicating that the accessibility to these substrates is disturbed. OptoFAK may prove to be a useful tool to study the biological function of FAK in growth factor and integrin signaling, tension-mediated focal adhesion maturation or anoikis and could additionally serve as test system for kinase inhibitors.
517.

Optimized light-inducible transcription in mammalian cells using Flavin Kelch-repeat F-box1/GIGANTEA and CRY2/CIB1.

blue CRY2/CIB1 FKF1/GI HEK293T human primary dermal fibroblasts isolated MEFs NIH/3T3 Transgene expression
Nucleic Acids Res, 10 Oct 2017 DOI: 10.1093/nar/gkx804 Link to full text
Abstract: Light-inducible systems allow spatiotemporal control of a variety of biological activities. Here, we report newly optimized optogenetic tools to induce transcription with light in mammalian cells, using the Arabidopsis photoreceptor Flavin Kelch-repeat F-box 1 (FKF1) and its binding partner GIGANTEA (GI) as well as CRY2/CIB1. By combining the mutagenesis of FKF1 with the optimization of a split FKF1/GI dimerized Gal4-VP16 transcriptional system, we identified constructs enabling significantly improved light-triggered transcriptional induction. In addition, we have improved the CRY2/CIB1-based light-inducible transcription with split construct optimization. The improvements regarding the FKF1/GI- and CRY2/CIB1-based systems will be widely applicable for the light-dependent control of transcription in mammalian cells.
518.

A single-chain photoswitchable CRISPR-Cas9 architecture for light-inducible gene editing and transcription.

blue cyan CRY2/CIB1 pdDronpa1 HEK293T Nucleic acid editing
ACS Chem Biol, 22 Sep 2017 DOI: 10.1021/acschembio.7b00603 Link to full text
Abstract: Optical control of CRISPR-Cas9-derived proteins would be useful for restricting gene editing or transcriptional regulation to desired times and places. Optical control of Cas9 functions has been achieved with photouncageable unnatural amino acids or by using light-induced protein interactions to reconstitute Cas9-mediated functions from two polypeptides. However, these methods have only been applied to one Cas9 species and have not been used for optical control of different perturbations at two genes. Here, we use photodissociable dimeric fluorescent protein domains to engineer single-chain photoswitchable Cas9 (ps-Cas9) proteins in which the DNA-binding cleft is occluded at baseline and opened upon illumination. This design successfully controlled different species and functional variants of Cas9, mediated transcriptional activation more robustly than previous optogenetic methods, and enabled light-induced transcription of one gene and editing of another in the same cells. Thus, a single-chain photoswitchable architecture provides a general method to control a variety of Cas9-mediated functions.
519.

Understanding CRY2 interactions for optical control of intracellular signaling.

blue CRY2/CIB1 CRY2/CRY2 CRY2olig Cos-7 HEK293T Signaling cascade control
Nat Commun, 15 Sep 2017 DOI: 10.1038/s41467-017-00648-8 Link to full text
Abstract: Arabidopsis cryptochrome 2 (CRY2) can simultaneously undergo light-dependent CRY2-CRY2 homo-oligomerization and CRY2-CIB1 hetero-dimerization, both of which have been widely used to optically control intracellular processes. Applications using CRY2-CIB1 interaction desire minimal CRY2 homo-oligomerization to avoid unintended complications, while those utilizing CRY2-CRY2 interaction prefer robust homo-oligomerization. However, selecting the type of CRY2 interaction has not been possible as the molecular mechanisms underlying CRY2 interactions are unknown. Here we report CRY2-CIB1 and CRY2-CRY2 interactions are governed by well-separated protein interfaces at the two termini of CRY2. N-terminal charges are critical for CRY2-CIB1 interaction. Moreover, two C-terminal charges impact CRY2 homo-oligomerization, with positive charges facilitating oligomerization and negative charges inhibiting it. By engineering C-terminal charges, we develop CRY2high and CRY2low with elevated or suppressed oligomerization respectively, which we use to tune the levels of Raf/MEK/ERK signaling. These results contribute to our understanding of the mechanisms underlying light-induced CRY2 interactions and enhance the controllability of CRY2-based optogenetic systems.Cryptochrome 2 (CRY2) can form light-regulated CRY2-CRY2 homo-oligomers or CRY2-CIB1 hetero-dimers, but modulating these interactions is difficult owing to the lack of interaction mechanism. Here the authors identify the interactions facilitating homo-oligomers and introduce mutations to create low and high oligomerization versions.
520.

CRISPR-Cas9-based photoactivatable transcription systems to induce neuronal differentiation.

blue CRY2/CIB1 Magnets HEK293T HeLa human fetal fibroblasts human IPSCs Cell differentiation Endogenous gene expression
Nat Methods, 11 Sep 2017 DOI: 10.1038/nmeth.4430 Link to full text
Abstract: Our improved CRISPR-Cas9-based photoactivatable transcription systems, CPTS2.0 and Split-CPTS2.0, enable high blue-light-inducible activation of endogenous target genes in various human cell lines. We achieved reversible activation of target genes with CPTS2.0 and induced neuronal differentiation in induced pluripotent stem cells (iPSCs) by upregulating NEUROD1 with Split-CPTS2.0.
521.

Applications of optobiology in intact cells and multi-cellular organisms.

blue cyan green near-infrared red Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
J Mol Biol, 4 Sep 2017 DOI: 10.1016/j.jmb.2017.08.015 Link to full text
Abstract: Temporal kinetics and spatial coordination of signal transduction in cells are vital for cell fate determination. Tools that allow for precise modulation of spatiotemporal regulation of intracellular signaling in intact cells and multicellular organisms remain limited. The emerging optobiological approaches use light to control protein-protein interaction in live cells and multicellular organisms. Optobiology empowers light-mediated control of diverse cellular and organismal functions such as neuronal activity, intracellular signaling, gene expression, cell proliferation, differentiation, migration, and apoptosis. In this review, we highlight recent developments in optobiology, focusing on new features of second-generation optobiological tools. We cover applications of optobiological approaches in the study of cellular and organismal functions, discuss current challenges, and present our outlook. Taking advantage of the high spatial and temporal resolution of light control, optobiology promises to provide new insights into the coordination of signaling circuits in intact cells and multicellular organisms.
522.

Two independent but synchronized Gβγ subunit-controlled pathways are essential for trailing-edge retraction during macrophage migration.

blue CRY2/CIB1 HeLa RAW264.7 Control of cytoskeleton / cell motility / cell shape
J Biol Chem, 1 Sep 2017 DOI: 10.1074/jbc.m117.787838 Link to full text
Abstract: Chemokine-induced directional cell migration is a universal cellular mechanism and plays crucial roles in numerous biological processes, including embryonic development, immune system function, and tissue remodeling and regeneration. During the migration of a stationary cell, the cell polarizes, forms lamellipodia at the leading edge (LE), and triggers the concurrent retraction of the trailing edge (TE). During cell migration governed by inhibitory G protein (Gi)-coupled receptors (GPCRs), G protein βγ (Gβγ) subunits control the LE signaling. Interestingly, TE retraction has been linked to the activation of the small GTPase Ras homolog family member A (RhoA) by the Gα12/13 pathway. However, it is not clear how the activation of Gi-coupled GPCRs at the LE orchestrates the TE retraction in RAW264.7 macrophages. Here, using an optogenetic approach involving an opsin to activate the Gi pathway in defined subcellular regions of RAW cells, we show that in addition to their LE activities, free Gβγ subunits also govern TE retraction by operating two independent, yet synchronized, pathways. The first pathway involves RhoA activation, which prevents dephosphorylation of the myosin light chain, allowing actomyosin contractility to proceed. The second pathway activates phospholipase Cβ and induces myosin light chain phosphorylation to enhance actomyosin contractility through increasing cytosolic calcium. We further show that both of these pathways are essential, and inhibition of either one is sufficient to abolish the Gi-coupled GPCR-governed TE retraction and subsequent migration of RAW cells.
523.

Photo-Activatable Akt Probe - A New Tool to Study the Akt-Dependent Physiopathology of Cancer Cells.

blue CRY2/CIB1 AML12 Signaling cascade control
Oncol Res, 30 Aug 2017 DOI: 10.3727/096504017x15040166233313 Link to full text
Abstract: Akt is commonly overexpressed and activated in cancer cells, and plays a pivotal role in cell survival, protection andchemo-resistance. Therefore, Akt is one of the target molecules in understanding characters of cancer cells and developing anti-cancer drugs. Here, we examined whether a newly developed photo-activatable Akt (PA-Akt) probe, based on a light-inducible protein interaction module of plant cryptochrome2 (CRY2) and cryptochrome-interacting basic-helix-loop-helix (CIB1), can regulate Akt-associated cell functions. By illuminating blue light to the cells stably transfected with PA-Akt probe, CRY2-Akt (a fusion protein of CRY2 and Akt) underwent structural change and interacted with Myr-CIBN (myristoylated N-terminal portion of CIB1) anchoring at cell membrane. Western blot analysis revealed that S473 and T308 of the Akt of probe-Akt were sequentially phosphorylated by intermittent and continuous light illumination. Endogenous Akt and GSK-3 , one of the main downstream signals of Akt, were also phosphorylated, depending on light intensity. These facts indicate that photo-activation of probe-Akt can activate endogenous Akt and its downstream signals. The photoactivated Akt conferred protection against nutritional deprivation and H2O2 stresses to the cells significantly. Using the newly developed PA-Akt probe, endogenous Akt was activated easily, transiently and repeatedly. This probe will be a unique tool in studying Akt-associated specific cellular functions in cancer cells and developing anti-cancer drugs.
524.

Genetically Encoded Photoactuators and Photosensors for Characterization and Manipulation of Pluripotent Stem Cells.

blue cyan red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Theranostics, 18 Aug 2017 DOI: 10.7150/thno.20593 Link to full text
Abstract: Our knowledge of pluripotent stem cell biology has advanced considerably in the past four decades, but it has yet to deliver on the great promise of regenerative medicine. The slow progress can be mainly attributed to our incomplete understanding of the complex biologic processes regulating the dynamic developmental pathways from pluripotency to fully-differentiated states of functional somatic cells. Much of the difficulty arises from our lack of specific tools to query, or manipulate, the molecular scale circuitry on both single-cell and organismal levels. Fortunately, the last two decades of progress in the field of optogenetics have produced a variety of genetically encoded, light-mediated tools that enable visualization and control of the spatiotemporal regulation of cellular function. The merging of optogenetics and pluripotent stem cell biology could thus be an important step toward realization of the clinical potential of pluripotent stem cells. In this review, we have surveyed available genetically encoded photoactuators and photosensors, a rapidly expanding toolbox, with particular attention to those with utility for studying pluripotent stem cells.
525.

An Engineered Optogenetic Switch for Spatiotemporal Control of Gene Expression, Cell Differentiation, and Tissue Morphogenesis.

blue CRY2/CIB1 C3H/10T1/2 HEK293T mouse in vivo Transgene expression Cell differentiation Developmental processes Nucleic acid editing
ACS Synth Biol, 9 Aug 2017 DOI: 10.1021/acssynbio.7b00147 Link to full text
Abstract: The precise spatial and temporal control of gene expression, cell differentiation, and tissue morphogenesis has widespread application in regenerative medicine and the study of tissue development. In this work, we applied optogenetics to control cell differentiation and new tissue formation. Specifically, we engineered an optogenetic "on" switch that provides permanent transgene expression following a transient dose of blue light illumination. To demonstrate its utility in controlling cell differentiation and reprogramming, we incorporated an engineered form of the master myogenic factor MyoD into this system in multipotent cells. Illumination of cells with blue light activated myogenic differentiation, including upregulation of myogenic markers and fusion into multinucleated myotubes. Cell differentiation was spatially patterned by illumination of cell cultures through a photomask. To demonstrate the application of the system to controlling in vivo tissue development, the light inducible switch was used to control the expression of VEGF and angiopoietin-1, which induced angiogenic sprouting in a mouse dorsal window chamber model. Live intravital microscopy showed illumination-dependent increases in blood-perfused microvasculature. This optogenetic switch is broadly useful for applications in which sustained and patterned gene expression is desired following transient induction, including tissue engineering, gene therapy, synthetic biology, and fundamental studies of morphogenesis.
Submit a new publication to our database